Home > Education > Bioinformatics studies by Bashar Ibrahim plus other scholar citations

Bioinformatics studies by Bashar Ibrahim plus other scholar citations

Bioinformatics guides plus extra science details? Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins.

Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the “Dissociation” and the “Convey” model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments.ConclusionOnly in the controlled.

Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function. See additional info on Rule-based spatial modeling molecules by Bashar Ibrahim.

Here, we show that the existence of these chemical organizations and therefore steady states is linked to the existence of cycles. Importantly, we provide a criterion for a qualitative transition, namely a transition from one self-sustaining set of molecular species to another via the introduction of a cycle. Because results purely based on topology do not yield sufficient conditions for dynamic properties, e.g. stability, other tools must be employed, such as analysis via ordinary differential equations. Hence, we study a special case, namely a particular type of reflexive autocatalytic network. Applications for this can be found in nature, and we give a detailed account of the mitotic spindle assembly and spindle position checkpoints. From our analysis, we conclude that the positive feedback provided by these networks’ cycles ensures the existence of a stable positive fixed point.

You may alo like...